SEC-MALS\textsubscript{785nm} for absolute molar mass measurements of technical lignins

Grigory Zinovyev1, Irina Sulaeva1, Stepan Podzimek2,3, Dierk Rössner2, Ilkka Kilpeläinen4, Ivan Sumerskii1, Thomas Rosenau1, Antje Potthast1

1 Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
2 Wyatt Technology Europe GmbH, Hochstrasse 12a, D-56307, Dernbach, Germany
3 Institute of Chemistry and Technology of Macromolecular Materials, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
4 Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, FI-00014 Helsinki, Finland

Corresponding author: antje.potthast@boku.ac.at

The molar mass distribution of technical lignins is a key parameter for the characterization of this abundant but thus far under-utilized biopolymer. The road to lignin utilization is closely connected to the ability to comprehensively and reliably analyse lignin. In the past, attempts to characterize technical lignin by light scattering with or without SEC-hyphenation have often failed. The classic SEC approach widely applied in lignin analysis is typically based on calibration with non-lignin standards. Several systems are available for SEC studies of lignins, including speed versions that apply Advanced Polymer Chromatography (APC) in the solvent system DMSO/LiBr of underivatized lignins \[1\]. The application of MALS as an absolute detection system for lignin molar mass, previously thwarted by lignin fluorescence and adsorption issues, was finally enabled with the advent of lasers in the infrared range. These lasers considerably reduce problems with the fluorescence of technical lignins, in particular those resulting from the Kraft process \[2\]. Also absorption of lignin samples interferes with a reliable measurement. Such effects are corrected with the laser forward monitor (FM). An extrapolation from high molar mass regions, which are less affected by fluorescence and absorption, to lower molar mass regions gives further improvement. We suggest this triple combination of IR laser usage, absorption correction through the laser FM and extrapolation improvement of low-molecular weight regions as the standard tool for accurate molar mass characterization of technical lignins, especially today, with the interest in lignin utilization skyrocketing.

References
